China high quality CHINAMFG Crane Geared Motor / End Carriage Motor with Great quality

Product Description

ELK Crane Geared Motor / End Carriage Motor

ELK  Crane Geared Motor with Buffer —- 0.25KW—3.75KW
Simple  Characters :
1.High Safety ,Quiet Voice Motor;
2.CE-ISO Approval;
3.Power 0.25–3.75Kw Crane Motor;
4.Easy Heat Dissipation Crane Geared Motor.
01.  ELK  Crane Geared Motor with Buffer  Features :


Q uality  W arranty  =  2  Years
( 1 ) Reduction  gear
The gear box is made of hight stress cast iron (FC25), and manufacture  by computer  numerical control machinery 
(CNCLATHE & CNC machine  center).  The gear is of Ni-Cr-Mo alloy steel(SNCM220 & SCM415) with carburization  process.
 The shaft is made by alignment and grinding . 
High accuracy  ,be durable and bumping. More than 5 times safety factor. Long working  life 
( 2 ) Buffer
When soft starting, and after fly wheel acting, the movement of high inertia is Produced. 
No impactness this keeps crane stable, smooth and noiseless to stabilize the brake.
( 3 ) Motor
High performance of start torque, motor body heat is easy to dissipation. 
High-pressure   resisting more than    1500V, light current, compact size, powerful output, available for high frequency working.
( 4 ) Electromagnet   B rake 
With direct-type electromagnet brake control can be adjustable with screw  high abrasion brake leather, 
long service life, safety and never be falling off.
  02.  This Type Crane Geared Motor with Buffer Advantages Notes :
( 1 ) . Small Volume with Compact Unitive Whole Part ;
( 2 ) . Sensitive Steady Electromagnetic Braking System;
( 3 ) . Super Quiet Voice & Soft Start and Soft Stop ;
( 4 ) . Lowest Impact ;
( 5 ) . High Torque/ Output Power Stronger /Easy Heat Dissipation;
( 6 ) . Highest Cost Performance & Lowest Repair Rate .
03.  ELK Crane geared motor with Buffer  Characters  :
Motor, Crane Motor,the motor,motor for crane,crane geared motor,reduction motor, geared reducer,reduction gears,
geared hub motor,geared motor india ,ac geared motor,dc geared motor, electric motor, 3phase induction motor ,
 end truck motor, end carriage motor .
04. ELK Crane geared motor with Buffer  Power  :
0.25Kw Crane Geared Motor,0.4Kw Crane Geared Motor, 0.75Kw Crane Geared Motor,
1.1Kw Crane Geared Motor,1.5Kw Crane Geared Motor,2.2Kw Crane Geared Motor,
3.75Kw Crane Geared Motor, Buffer Motor, Double Speeds Reducer, Dual Speeds Geared Motor .

     1. ELK  Crane Geared Motor with Buffer Advantages :
..Small Volume : Reducer and Buffer Block and Motor(3Parts) are combined to be one whole Part.
..Safety and Reliability :Electromagnetic Brake with DC current ;
..Lower Noise :Helical tooth transmission ;
..Lower Impact : With Buffer Block , Soft Start and Soft Stop .
..Long Service Time : With Highly Durable brake block ;
..Quality Warranty: 2 Years– Lowest Repair-rate ; Easy heat dissipation .


1. ELK Crane Geared Motor with Buffer — Technical  Parameters :      
Mode with buffer Power(Kw) Poles Module Reduction Ratio Rotation Speed(50Hz) Voltage Work Class Weight  (Kgs) Volume (m3)
KD-030 NO 0.25Kw 4P M3/M3.5/M4 10:1 133 r/min 200V-600V/
3Phase/ 50Hz
M4 14Kg 0.011
NO 0.25Kw 6P 90  r/min M4
NO 0.4Kw 4P 133 r/min M4 26Kg 0.571
KD-050 Yes 0.4Kw 4P M3/M4/M5 8.5:1 176 r/min M4
Yes 0.37Kw 6P 112 r/min M4 31Kg 0.571
KD-100 Yes 0.75Kw 4P M3/M3.5/M4/M5 7.7:1 189 r/min M4
Yes 0.6Kw 6P 123 r/min M4 33Kg 0.571
Yes 0.4/0.13Kw 4/12P 189/62 r/min M4
KD-150 Yes 1.1Kw 4P M4/M5/M3.5 13:1 112 r/min M4 47Kg 0.032
Yes 0.75Kw 6P 67 r/min M4
Yes 0.6/0.2Kw 4/12P 112/33 r/min M4
KD-150A Yes 1.1Kw 4P M3/M3.5/M4/M5 7.7:1 189 r/min M4 33Kg 0.571
Yes 0.75Kw 6P 123 r/min M4
Yes 0.6/0.2Kw 4/12P 189/62 r/min M4
KD-200 Yes 1.5Kw 4P M3.5/M4/M5/M6 16:1 92 r/min M4 71Kg 0.06
Yes 1.1Kw 4P 92 r/min M4
Yes 1.1Kw 6P 61 r/min M4
Yes 0.75/0.25Kw 4/12P 92/30 r/min M4
KD-300 Yes 2.2Kw 4P M4/M5/  M6 16:1 92 r/min M4 91Kg 0.07
Yes 1.5Kw 6P 61 r/min M4
Yes 1.5/0.5Kw 4/12P 92/31 r/min M4
KD-500 Yes 3.75Kw 4P M5/M6/ M7 16:1 92 r/min M4 96Kg 0.07
Yes 3.75Kw 6P 61 r/min M4
Yes 2.2Kw 6P 61 r/min M4
Yes 2.2/0.75Kw 4/12P 92/30 r/min M4

After-sale Services– within 24 Hours:
(1)…. Before–Sale Service : 
01..Quality Control:  Strictly Production Request base on signed contract ;
02..Delivery Time:  Guarantee within contracted delivery time ;
03..Photos:  Send photos to our customer after finish production and packing ;
04..Packing Details: Give complete packing size table to our customer;
05..Brand:  Respect our customers ‘  advice to use our customers ‘  own brand & logo ;
06..Documents: Provide high efficiency service to post you all required customs clearance documents by DHL or TNT .  
(2)….After–Sale Service :  
01..Reply :  Fast reply all your questions on line or by email or by telephone ;
02..Quality Problems: Our factory is responsible for any problems if it is resulted by our reasons
(Such as give you free new parts to repair it  or give enough some compensation cost to you) ;
03..Safe Operating:  Pls remind your customers to respect our Operating Manual to operate our machine rightly,
to guarantee Safe when operate our machine ;

Factory Info & FAQ:
0 1. Are you manufacturer or trade Company?
— We are a factory founded in 20 10  Year . 
0 2.How about sample & MOQ policy?
— Welcome sample order. MOQ can be 1 set. 
0 3. W hat is your lead time for your goods?
— Normally 15 days after confirmed order. 10 days could be available for some items in sufficient stock and standard requirements,
and 30 days during new year and hot season ( Jan to March). /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: 176r/Min
Number of Stator: Three-Phase
Function: Driving
Casing Protection: Closed Type
Number of Poles: 4


gear motor

Can gear motors be used in robotics, and if so, what are some notable applications?

Yes, gear motors are widely used in robotics due to their ability to provide torque, precise control, and compact size. They play a crucial role in various robotic applications, enabling the movement, manipulation, and control of robotic systems. Here are some notable applications of gear motors in robotics:

1. Robotic Arm Manipulation:

Gear motors are commonly used in robotic arms to provide precise and controlled movement. They enable the articulation of the arm’s joints, allowing the robot to reach different positions and orientations. Gear motors with high torque capabilities are essential for lifting, rotating, and manipulating objects with varying weights and sizes.

2. Mobile Robots:

Gear motors are employed in mobile robots, including wheeled robots and legged robots, to drive their locomotion. They provide the necessary torque and control for the robot to move, turn, and navigate in different environments. Gear motors with appropriate gear ratios ensure the robot’s mobility, stability, and maneuverability.

3. Robotic Grippers and End Effectors:

Gear motors are used in robotic grippers and end effectors to control the opening, closing, and gripping force. By integrating gear motors into the gripper mechanism, robots can grasp and manipulate objects of various shapes, sizes, and weights. The gear motors enable precise control over the gripping action, allowing the robot to handle delicate or fragile objects with care.

4. Autonomous Drones and UAVs:

Gear motors are utilized in the propulsion systems of autonomous drones and unmanned aerial vehicles (UAVs). They drive the propellers or rotors, providing the necessary thrust and control for the drone’s flight. Gear motors with high power-to-weight ratios, efficient energy conversion, and precise speed control are crucial for achieving stable and maneuverable flight in drones.

5. Humanoid Robots:

Gear motors are integral to the movement and functionality of humanoid robots. They are used in robotic joints, such as hips, knees, and shoulders, to enable human-like movements. Gear motors with appropriate torque and speed capabilities allow humanoid robots to walk, run, climb stairs, and perform complex motions resembling human actions.

6. Robotic Exoskeletons:

Gear motors play a vital role in robotic exoskeletons, which are wearable robotic devices designed to augment human strength and assist in physical tasks. Gear motors are used in the exoskeleton’s joints and actuators, providing the necessary torque and control to enhance human abilities. They enable users to perform tasks with reduced effort, assist in rehabilitation, or provide support in physically demanding environments.

These are just a few notable applications of gear motors in robotics. Their versatility, torque capabilities, precise control, and compact size make them indispensable components in various robotic systems. Gear motors enable robots to perform complex tasks, move with agility, interact with the environment, and assist humans in a wide range of applications, from industrial automation to healthcare and exploration.

gear motor

Can gear motors be used for precise positioning, and if so, what features enable this?

Yes, gear motors can be used for precise positioning in various applications. The combination of gear mechanisms and motor control features enables gear motors to achieve accurate and repeatable positioning. Here’s a detailed explanation of the features that enable gear motors to be used for precise positioning:

1. Gear Reduction:

One of the key features of gear motors is their ability to provide gear reduction. Gear reduction refers to the process of reducing the output speed of the motor while increasing the torque. By using the appropriate gear ratio, gear motors can achieve finer control over the rotational movement, allowing for more precise positioning. The gear reduction mechanism enables the motor to rotate at a slower speed while maintaining higher torque, resulting in improved accuracy and control.

2. High Resolution Encoders:

Many gear motors are equipped with high-resolution encoders. An encoder is a device that measures the position and speed of the motor shaft. High-resolution encoders provide precise feedback on the motor’s rotational position, allowing for accurate position control. The encoder signals are used in conjunction with motor control algorithms to ensure precise positioning by monitoring and adjusting the motor’s movement in real-time. The use of high-resolution encoders greatly enhances the gear motor’s ability to achieve precise and repeatable positioning.

3. Closed-Loop Control:

Gear motors with closed-loop control systems offer enhanced positioning capabilities. Closed-loop control involves continuously comparing the actual motor position (as measured by the encoder) with the desired position and making adjustments to minimize any position error. The closed-loop control system uses feedback from the encoder to adjust the motor’s speed, direction, and torque, ensuring accurate positioning even in the presence of external disturbances or variations in the load. Closed-loop control enables gear motors to actively correct for position errors and maintain precise positioning over time.

4. Stepper Motors:

Stepper motors are a type of gear motor that provides excellent precision and control for positioning applications. Stepper motors operate by converting electrical pulses into incremental steps of movement. Each step corresponds to a specific angular displacement, allowing precise positioning control. Stepper motors offer high step resolution, allowing for fine position adjustments. They are commonly used in applications that require precise positioning, such as robotics, 3D printers, and CNC machines.

5. Servo Motors:

Servo motors are another type of gear motor that excels in precise positioning tasks. Servo motors combine a motor, a feedback device (such as an encoder), and a closed-loop control system. They offer high torque, high speed, and excellent positional accuracy. Servo motors are capable of dynamically adjusting their speed and torque to maintain the desired position accurately. They are widely used in applications that require precise and responsive positioning, such as industrial automation, robotics, and camera pan-tilt systems.

6. Motion Control Algorithms:

Advanced motion control algorithms play a crucial role in enabling gear motors to achieve precise positioning. These algorithms, implemented in motor control systems or dedicated motion controllers, optimize the motor’s behavior to ensure accurate positioning. They take into account factors such as acceleration, deceleration, velocity profiling, and jerk control to achieve smooth and precise movements. Motion control algorithms enhance the gear motor’s ability to start, stop, and position accurately, reducing position errors and overshoot.

By leveraging gear reduction, high-resolution encoders, closed-loop control, stepper motors, servo motors, and motion control algorithms, gear motors can be effectively used for precise positioning in various applications. These features enable gear motors to achieve accurate and repeatable positioning, making them suitable for tasks that require precise control and reliable positioning performance.

gear motor

What are the different types of gears used in gear motors, and how do they impact performance?

Various types of gears are used in gear motors, each with its unique characteristics and impact on performance. The choice of gear type depends on the specific requirements of the application, including torque, speed, efficiency, noise level, and space constraints. Here’s a detailed explanation of the different types of gears used in gear motors and their impact on performance:

1. Spur Gears:

Spur gears are the most common type of gears used in gear motors. They have straight teeth that are parallel to the gear’s axis and mesh with another spur gear to transmit power. Spur gears provide high efficiency, reliable operation, and cost-effectiveness. However, they can generate significant noise due to the meshing of teeth, and they may produce axial thrust forces. Spur gears are suitable for applications that require high torque transmission and moderate to high rotational speeds.

2. Helical Gears:

Helical gears have angled teeth that are cut at an angle to the gear’s axis. This helical tooth configuration enables gradual engagement and smoother tooth contact, resulting in reduced noise and vibration compared to spur gears. Helical gears provide higher load-carrying capacity and are suitable for applications that require high torque transmission and moderate to high rotational speeds. They are commonly used in gear motors where low noise operation is desired, such as in automotive applications and industrial machinery.

3. Bevel Gears:

Bevel gears have teeth that are cut on a conical surface. They are used to transmit power between intersecting shafts, usually at right angles. Bevel gears can have straight teeth (straight bevel gears) or curved teeth (spiral bevel gears). These gears provide efficient power transmission and precise motion control in applications where shafts need to change direction. Bevel gears are commonly used in gear motors for applications such as steering systems, machine tools, and printing presses.

4. Worm Gears:

Worm gears consist of a worm (a type of screw) and a mating gear called a worm wheel or worm gear. The worm has a helical thread that meshes with the worm wheel, resulting in a compact and high gear reduction ratio. Worm gears provide high torque transmission, low noise operation, and self-locking properties, which prevent reverse motion. They are commonly used in gear motors for applications that require high gear reduction and locking capabilities, such as in lifting mechanisms, conveyor systems, and machine tools.

5. Planetary Gears:

Planetary gears, also known as epicyclic gears, consist of a central sun gear, multiple planet gears, and an outer ring gear. The planet gears mesh with both the sun gear and the ring gear, creating a compact and efficient gear system. Planetary gears offer high torque transmission, high gear reduction ratios, and excellent load distribution. They are commonly used in gear motors for applications that require high torque and compact size, such as in robotics, automotive transmissions, and industrial machinery.

6. Rack and Pinion:

Rack and pinion gears consist of a linear rack (a straight toothed bar) and a pinion gear (a spur gear with a small diameter). The pinion gear meshes with the rack to convert rotary motion into linear motion or vice versa. Rack and pinion gears provide precise linear motion control and are commonly used in gear motors for applications such as linear actuators, CNC machines, and steering systems.

The choice of gear type in a gear motor depends on factors such as the desired torque, speed, efficiency, noise level, and space constraints. Each type of gear offers specific advantages and impacts the performance of the gear motor differently. By selecting the appropriate gear type, gear motors can be optimized for their intended applications, ensuring efficient and reliable power transmission.

China high quality CHINAMFG Crane Geared Motor / End Carriage Motor   with Great quality China high quality CHINAMFG Crane Geared Motor / End Carriage Motor   with Great quality
editor by CX 2024-03-07