China supplier 110V 220V 5W-3700W High Power Nmrv Worm Geared AC Gear Motors vacuum pump for ac

Product Description

110v 220v 20w-1500w High Power NMRV Worm Geared AC Gear Motors

DC Motor Specification

Model Torque
( mN.m)
Speed
(r/min)
Power
(W)
Voltage
(V)
Max Current
( A)
CW/CCW Speed Difference
( r/min)
55ZYT01 63.7 3000 20 24 1.50  200
55ZYT02 63.7 3000 20 27 1.30  200
55ZYT03 63.7 3000 20 48 0.70  200
55ZYT04 63.7 3000 20 110 0.34  200
55ZYT05 55.7 6000 35 24 2.50  300
55ZYT06 55.7 6000 35 27 2.20  300
55ZYT07 55.7 6000 35 48 1.30  300
55ZYT08 55.7 6000 35 110 0.54  300
55Z YT10 63.7 3600 24 110 0.40  200
55ZYT51 92.3 3000 29 24 2.10  200
55ZYT52 92.3 3000 29 27 1.80  200
55ZYT53 92.3 3000 29 48 1.10  200
55ZYT54 92.3 3000 29 110 0.46  200
55ZYT55 79.6 6000 50 24 3.45  300
55ZYT56 79.6 6000 50 27 3.10  300
55ZYT57 79.6 6000 50 48 1.74  300
55ZYT58 79.6 6000 50 110 0.74  300
55ZYT59 85 8000- 10000 80 110 1.15  500
55ZYT61 76.4 5000 40 24 2.50  250
55ZYT63/H1 127.4 1500 20 24 1.25  100
55ZYT64/H9 95 3000 30 220 0.25  200
55ZYT65 89.2 7500 70 110 1.00  400
55ZYT66 110.8 2500 29 110 0.45  150
55ZYT68 69.6 5500 40 36 1.70  250
55ZYT72 95.5 2500 25 24 1.70  150
70ZYT01 159.2 3000 50 24 3.20  200
70ZYT02 159.2 3000 50 27 2.90  200
70ZYT03 159.2 3000 50 48 1.50  200
70ZYT04 159.2 3000 50 110 0.70  200
70ZYT05 135.4 6000 85 24 5.20  300
70ZYT06 135.4 6000 85 27 4.80  300
70ZYT07 135.4 6000 85 48 2.60  300
70ZYT08 135.4 6000 85 110 1.10  300
70ZYT16 191 2000 40 24 2.30  100
70ZYT21 95.5 3000 50 220 0.20  200
70ZYT51 223 3000 70 24 4.30  200
70ZYT52 223 3000 70 27 3.80  200
70ZYT53 223 3000 70 48 2.20  200
70ZYT54 223 3000 70 110 0.95  200
70ZYT55 191.1 6000 120 24 7.50  300
70ZYT56 191.1 6000 120 27 6.60  300
70ZYT57 191.1 6000 120 48 3.80  300
70ZVT58 191.1 6000 120 110 1.60  300
70ZYT59 166.6 7500-9500 148 110 1.95  400
70ZYT60 238.8 4000 100 110 1.30  200
70ZYT80 223 3000 70 80 1.20  200
90ZYT01 323 1500 50 110 0.66  100
90ZYT02 323 1500 50 220 0.33  100
90ZYT03 294 3000 92 110 1.20  200
90ZYT04 294 3000 92 220 0.60  200
90ZYT05 294 3000 92 24 6.10  200
90ZYT51 510 1500 80 110 1.10  100
90ZYT52 510 1500 80 220 0.55  100
90ZYT53 480 3000 150 110 2.00  200
90ZYT54 480 3000 150 220 1.00  200
90ZYT55 510 1500 80 24 5.00  100
90ZYT56 480 3000 150 24 8.00  200
90ZYT101 796 1500 125 110 1.60  100
90ZYT102 7986 1500 125 220 0.80  100
90ZYT103 733 3000 230 110 2.80  200
90ZYT104 733 3000 230 220 1.50  200
90ZYT105 733 3000 230 24 13.50  200
90ZYT106 796 1500 125 24 6.50  200
110ZYT51 1177 1500 185 110 2.50  100
110ZYT52 1177 1500 185 220 1.25  100
110ZYT53 980 3000 308 110 4.00  200
110ZYT54 980 3000 308 220 2.00  200
110ZYT55 980 3000 308 24 16.50  200
110ZYT56 1177 1500 180 24 8.00  100
110ZYT101 1560 1500 245 110 3.00  100
110ZYT102 1560 1500 245 220 1.50  100
110ZYT103 1274 3000 400 110 4.80  200
110ZYT104 1274 3000 400 220 2.40  200
110ZYT105 1274 3000 400 24 22.50  200
110ZYT106 1560 1500 250 24 12.00  100
110ZYT151 2390 1500 375 110 4.50  100
110ZYT152 2390 1500 375 220 2.30  100
110ZYT153 2230 3000 700 110 8.50  200
110ZYT154 2230 3000 700 220 4.20  200
110ZYT155 2230 3000 700 24 45.00  200
110ZYT156 2390 1500 370 24 22.00  100
130ZYT51 3185 1500 550 110 5.80  100
130ZYT52 3185 1500 550 220 2.90  100
130ZYT53 3185 3000 1000 110 11.00  200
130ZYT54 3185 3000 1000 220 5.50  200
130ZYT55 3185 3000 1000 24 50.00  200
130ZYT56 3185 1500 550 24 28.00  100
130ZYT101 3822 1500 700 110 7.00  100
130ZYT102 3822 1500 700 220 3.50  100
130ZYT103 3822 3000 1200 110 13.00  200
130ZYT104 3822 3000 1200 220 6.50  200
130ZYT105 3820 1500 700 24 30.00  100
130ZYT106 3820 3000 1100 24 50.00  200
130ZYT151 4500 1500 1000 110 8.00  100
130ZYT152 4500 1500 1000 220 4.00  100
130ZYT153 4500 3000 1500 110 15.00  200
130ZVT154 4500 3000 1500 220 8.00  200
130ZYT155 4500 1500 1000 24 38.00  100
130ZYT156 4500 3000 1200 24 55.00  200
130ZYT185 6200 1500 1200 24 60.00  100

AC Motor Specification

Motor type Induction motor, brake motor, torque motor, speed adjustable motor, reversible motor
Frame size 60 mm, 70mm, 80mm, 90mm, 104mm
Motor Output speed 1250rpm – 1500rpm
Gearbox Speed Ratio 1:3 – 1: 500
Output power 60mm: 6W, 10W

70mm: 15W, 20W

80mm: 25W, 30W

90mm: 40W, 60W, 90W, 120W

104mm: 140W, 200W, 250W, 370W

Output shaft 8mm ~ 50mm; round shaft, D-cut shaft, key-way shaft, hollow shaft
Voltage 110v, 220v, 230v, 380v
Frequency 50Hz, 60Hz

Worm Gearbox Specification

 

NMRV PAM N M P D
IEC 5 7.5 10 15 20 25 30 40 50 60 80 100
571 56B14 50 65 80 9 9 9 9 9 9 9 9 9
030 63B5 95 115 140 11 11 11 11 11 11 11 11 11
63B14 60 75 90
56B5 80 100 120 9 9 9 9 9 9 9 9 9 9 9
56B14 50 65 80
040 71B5 110 130 160 14 14 14 14 14 14 14 14
71B14 70 85 105
63B5 95 115 140 11 11 11 11 11 11 11 11 11 11 11 11
63B14 60 75 90
56B5 80 100 120 9 9 9 9
050 80B5 130 165 200 19 19 19 19 19 19 19
80B14 80 100 120
71B5 110 130 160 14 14 14 14 14 14 14 14 14 14 14
71B14 70 85 105
63B5 95 115 140 11 11 11 11 11
063 90B5 130 165 200 24 24 24 24 24 24 24
90B14 95 115 140
80B5 130 165 200 19 19 19 19 19 19 19 19 19 19
80B14 80 100 120
71B5 110 130 160 14 14 14 14 14
71B14 70 85 105
075 100/112B5 180 215 250 28 28 28
100/112B14 110 130 160
90B5 130 165 200 24 24 24 24 24 24 24 24
90B14 95 115 140
80B5 130 165 200 19 19 19 19 19 19 19 19
80B14 80 100 120
71B5 110 130 160 14 14 14 14
090 100/112B5 180 215 250 28 28 28 28 28 28 28
100/112B14 110 130 160
90B5 130 165 200 24 24 24 24 24 24 24 24 24 24
90B14 95 115 140
80B5 130 165 200 19 19 19 19 19
80B14 80 100 120
110 132B5 230 265 300 38 38 38 38
100/112B5 180 215 250 28 28 28 28 28 28 28 28 28
90B5 130 165 200 24 24 24 24 24 24 24
80B5 130 165 200 19 19
130 132B5 230 265 300 38 38 38 38 38 38 38
100 /112B5 180 215 250 28 28 28 28 28 28 28
90B5 130 165 200 24 24

Note:

Motor voltage, power and speed will be customized according to your request under the allowed circumstance of adoptable dimension. You may feel free to contact us for details. Our sales engineer will reply as soon as possible.

Small Electric Motor Family

Company Overview

 
HISTORY: Greensky is a mechanical brand of CHINAMFG Power Co., Ltd. With over 10 years’
mechanical manufacturing experiences, CHINAMFG Power always strictly stands on the
principle of Best Customer Satisfaction.

QUALITY: Material Inspection, Production Control, Finished Goods Test, Pre-dellivery Inspection

MISSION: “Once and forever” is our goal to serve customers in the world. Once we do
business with customer, we will do business forever.

MARKET30 different countries, mainly Germany, Austria, Japan, USA and Middle-East.

DELIVERY100% on-time delivery Guaranteed.

SERVICESFast response in English, German, Japanese and Chinese languages.

OEMCustomized orders are welcome at CHINAMFG Power.
  

Certificates

Overseas Exhibitions

Welcome your inquiry! Our Sales Team will reply you as soon as possible.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Variable Speed
Number of Stator: 1pH / 3pH
Function: Driving
Casing Protection: Protection Type
Number of Poles: 4
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

gear motor

What types of feedback mechanisms are commonly integrated into gear motors for control?

Gear motors often incorporate feedback mechanisms to provide control and improve their performance. These feedback mechanisms enable the motor to monitor and adjust its operation based on various parameters. Here are some commonly integrated feedback mechanisms in gear motors:

1. Encoder Feedback:

An encoder is a device that provides position and speed feedback by converting the motor’s mechanical motion into electrical signals. Encoders commonly used in gear motors include:

  • Incremental Encoders: These encoders provide information about the motor’s shaft position and speed relative to a reference point. They generate pulses as the motor rotates, allowing precise measurement of position and speed changes.
  • Absolute Encoders: Absolute encoders provide the precise position of the motor’s shaft within a full revolution. They do not require a reference point and provide accurate feedback even after power loss or motor restart.

2. Hall Effect Sensors:

Hall effect sensors use the principle of the Hall effect to detect the presence and strength of a magnetic field. They are commonly used in gear motors for speed and position sensing. Hall effect sensors provide feedback by detecting changes in the motor’s magnetic field and converting them into electrical signals.

3. Current Sensors:

Current sensors monitor the electrical current flowing through the motor’s windings. By measuring the current, these sensors provide feedback regarding the motor’s torque, load conditions, and power consumption. Current sensors are essential for motor control strategies such as current limiting, overcurrent protection, and closed-loop control.

4. Temperature Sensors:

Temperature sensors are integrated into gear motors to monitor the motor’s temperature. They provide feedback on the motor’s thermal conditions, allowing the control system to adjust the motor’s operation to prevent overheating. Temperature sensors are crucial for ensuring the motor’s reliability and preventing damage due to excessive heat.

5. Hall Effect Limit Switches:

Hall effect limit switches are used to detect the presence or absence of a magnetic field within a specific range. They are commonly employed as end-of-travel or limit switches in gear motors. Hall effect limit switches provide feedback to the control system, indicating when the motor has reached a specific position or when it has moved beyond the allowed range.

6. Resolver Feedback:

A resolver is an electromagnetic device used to determine the position and speed of a rotating shaft. It provides feedback by generating sine and cosine signals that correspond to the shaft’s angular position. Resolver feedback is commonly used in high-performance gear motors requiring accurate position and speed control.

These feedback mechanisms, when integrated into gear motors, enable precise control, monitoring, and adjustment of various motor parameters. By utilizing feedback signals from encoders, Hall effect sensors, current sensors, temperature sensors, limit switches, or resolvers, the control system can optimize the motor’s performance, ensure accurate positioning, maintain speed control, and protect the motor from excessive loads or overheating.

gear motor

How do gear motors compare to other types of motors in terms of power and efficiency?

Gear motors can be compared to other types of motors in terms of power output and efficiency. The choice of motor type depends on the specific application requirements, including the desired power level, efficiency, speed range, torque characteristics, and control capabilities. Here’s a detailed explanation of how gear motors compare to other types of motors in terms of power and efficiency:

1. Gear Motors:

Gear motors combine a motor with a gear mechanism to deliver increased torque output and improved control. The gear reduction enables gear motors to provide higher torque while reducing the output speed. This makes gear motors suitable for applications that require high torque, precise positioning, and controlled movements. However, the gear reduction process introduces mechanical losses, which can slightly reduce the overall efficiency of the system compared to direct-drive motors. The efficiency of gear motors can vary depending on factors such as gear quality, lubrication, and maintenance.

2. Direct-Drive Motors:

Direct-drive motors, also known as gearless or integrated motors, do not use a gear mechanism. They provide a direct connection between the motor and the load, eliminating the need for gear reduction. Direct-drive motors offer advantages such as high efficiency, low maintenance, and compact design. Since there are no gears involved, direct-drive motors experience fewer mechanical losses and can achieve higher overall efficiency compared to gear motors. However, direct-drive motors may have limitations in terms of torque output and speed range, and they may require more complex control systems to achieve precise positioning.

3. Stepper Motors:

Stepper motors are a type of gear motor that excels in precise positioning applications. They operate by converting electrical pulses into incremental steps of movement. Stepper motors offer excellent positional accuracy and control. They are capable of precise positioning and can hold a position without power. Stepper motors have relatively high torque at low speeds, making them suitable for applications that require precise control and positioning, such as robotics, 3D printers, and CNC machines. However, stepper motors may have lower overall efficiency compared to direct-drive motors due to the additional power required to overcome the detents between steps.

4. Servo Motors:

Servo motors are another type of gear motor known for their high torque, high speed, and excellent positional accuracy. Servo motors combine a motor, a feedback device (such as an encoder), and a closed-loop control system. They offer precise control over position, speed, and torque. Servo motors are widely used in applications that require accurate and responsive positioning, such as industrial automation, robotics, and camera pan-tilt systems. Servo motors can achieve high efficiency when properly optimized and controlled but may have slightly lower efficiency compared to direct-drive motors due to the additional complexity of the control system.

5. Efficiency Considerations:

When comparing power and efficiency among different motor types, it’s important to consider the specific requirements and operating conditions of the application. Factors such as load characteristics, speed range, duty cycle, and control requirements influence the overall efficiency of the motor system. While direct-drive motors generally offer higher efficiency due to the absence of mechanical losses from gears, gear motors can deliver higher torque output and enhanced control capabilities. The efficiency of gear motors can be optimized through proper gear selection, lubrication, and maintenance practices.

In summary, gear motors offer increased torque and improved control compared to direct-drive motors. However, gear reduction introduces mechanical losses that can slightly impact the overall efficiency of the system. Direct-drive motors, on the other hand, provide high efficiency and compact design but may have limitations in terms of torque and speed range. Stepper motors and servo motors, both types of gear motors, excel in precise positioning applications but may have slightly lower efficiency compared to direct-drive motors. The selection of the most suitable motor type depends on the specific requirements of the application, balancing power, efficiency, speed range, and control capabilities.

gear motor

What is a gear motor, and how does it combine the functions of gears and a motor?

A gear motor is a type of motor that incorporates gears into its design to combine the functions of gears and a motor. It consists of a motor, which provides the mechanical power, and a set of gears, which transmit and modify this power to achieve specific output characteristics. Here’s a detailed explanation of what a gear motor is and how it combines the functions of gears and a motor:

A gear motor typically consists of two main components: the motor and the gear system. The motor is responsible for converting electrical energy into mechanical energy, generating rotational motion. The gear system, on the other hand, consists of multiple gears with different sizes and tooth configurations. These gears are meshed together in a specific arrangement to transmit and modify the output torque and speed of the motor.

The gears in a gear motor serve several functions:

1. Torque Amplification:

One of the primary functions of the gear system in a gear motor is to amplify the torque output of the motor. By using gears with different sizes, the input torque can be effectively multiplied or reduced. This allows the gear motor to provide higher torque at lower speeds or lower torque at higher speeds, depending on the gear arrangement. This torque amplification is beneficial in applications where high torque is required, such as in heavy machinery or vehicles.

2. Speed Reduction or Increase:

The gear system in a gear motor can also be used to reduce or increase the rotational speed of the motor output. By utilizing gears with different numbers of teeth, the gear ratio can be adjusted to achieve the desired speed output. For example, a gear motor with a higher gear ratio will output lower speed but higher torque, whereas a gear motor with a lower gear ratio will output higher speed but lower torque. This speed control capability allows for precise matching of motor output to the requirements of specific applications.

3. Directional Control:

Gears in a gear motor can be used to control the direction of rotation of the motor output shaft. By employing different combinations of gears, such as spur gears, bevel gears, or worm gears, the rotational direction can be changed. This directional control is crucial in applications where bidirectional movement is required, such as in conveyor systems or robotic arms.

4. Load Distribution:

The gear system in a gear motor helps distribute the load evenly across multiple gears, which reduces the stress on individual gears and increases the overall durability and lifespan of the motor. By sharing the load among multiple gears, the gear motor can handle higher torque applications without putting excessive strain on any particular gear. This load distribution capability is especially important in heavy-duty applications that require continuous operation under demanding conditions.

By combining the functions of gears and a motor, gear motors offer several advantages. They provide torque amplification, speed control, directional control, and load distribution capabilities, making them suitable for various applications that require precise and controlled mechanical power. Gear motors are commonly used in industries such as robotics, automotive, manufacturing, and automation, where reliable and efficient power transmission is essential.

China supplier 110V 220V 5W-3700W High Power Nmrv Worm Geared AC Gear Motors   vacuum pump for ac	China supplier 110V 220V 5W-3700W High Power Nmrv Worm Geared AC Gear Motors   vacuum pump for ac
editor by CX 2024-02-18