China supplier China Supplier 2p/4p Horizontal & Vertical Mounted Gear Motor vacuum pump oil near me

Product Description

Product Description

Speed Reducer Gear Motor (Horizontal & Vertical Mounted)

Our Gear Reduction Motor is using high level materials and with optimized design.

Our R&D Team has more than 25 years of experience in motor design and production.

Our motor is capable for Frequent starting, brake, Reverse run, frequency control of speed.
 

It’s now widely used for Industrial Automation Devices such as Ceramic Machinery, Food Processing Machinery, Conveying Equipment, Plastic Machinery, Wood-working Machine, Glass Machinery, Carton Machinery, Fully Automatic Production Line, ect.

– High Strength Material

– Multiple Application

– Compact design, Easy Installation

– High Torque and Optional Reduce Ratio

– Energy Saving

– Low Noise

– Low Temperature Rise

– Long Lifetime

 

Product Parameters

PRODUCT SPECIFICATIONS

Main Specifications

Power

(kW)

0.1

0.2

0.4

0.75

1.5

2.2

3.7

Power

(HP)

1/8

1/4

1/2

1

2

3

4

Shaft Size

(mm)

18/22

/28

18/22

/28/32

22/28

/32/40

28/32

/40/50

32/40

/50

32/40

/50

40/50

Ratio

5-1800

5-1800

5-1800

5-1800

5-200

5-120

5-100

Output Torque

(kg.m)

0.16-11.6

0.31-22.9

0.6-76.8

1.1-82.8

2.2-148

3.2-126

5.5-127

Output Speed

(RPM)

7-573

7-573

7-573

7-573

8-573

14-573

24-573

Product Dimensions

Horizontal Type

 

Vertical Type
 

Torque of Speed Reduction Geared Motor

 

Company Profile

Reassuring Service

BRESPALIN is a leading manufacturer of high-quality ventilation exhaust fans and motors. Our mission is to provide our customers with innovative, energy-efficient solutions that meet their unique needs. We are committed to integrity, quality, and customer satisfaction, and we strive to be the best in our industry.

At BRESPALIN, we offer a wide range of ventilation exhaust fans and motors, including axial fans, centrifugal fans, mixed flow fans, and more. Our products are made with the highest quality materials and are designed to be energy-efficient, durable, and long-lasting. We also provide OEM and ODM services for custom fans and motors, tailored to our clients’ specific requirements.

[Production Capacity]:
Our factory is equipped with the latest technology and equipment, allowing us to produce a high volume of fans and motors with short lead times. We have strict quality control measures in place, including ISO 9001, CE, CB and GCC certification and rigorous testing procedures, to ensure that our products meet the highest standards.

[Customers]:
Our clients come from a variety of industries, including HVAC, construction, and manufacturing. We have served companies of all sizes, from small startups to large corporations, and have earned a reputation for reliability, professionalism, and quality.

[Team]:
Our team is made up of experienced engineers, technicians, and support staff, who work together to deliver exceptional results. We are committed to ongoing education and training, and we strive to stay up-to-date with the latest industry trends and technology.

CERTIFICATIONS:

EXHIBITIONS:

[Facilities]:
Our factory is located in a modern facility, equipped with state-of-the-art machinery and equipment. We have invested in advanced technology, such as 3D printing and CAD software, to streamline our production processes and improve our efficiency.

[Quality Control]:
Quality is our top priority, and we have strict quality control measures in place to ensure that our products meet the highest standards. Our fans and motors undergo rigorous testing procedures, and we adhere to ISO 9001 certification and other industry standards.

[Environmental and Social Responsibility]:
At BRESPALIN, we are committed to environmental and social responsibility. We use eco-friendly materials and energy-efficient technologies to minimize our carbon footprint, and we are involved in charitable organizations that support our local community.

 

FAQ

 

Q1. How to order?
A1. Please send us inquiry → receive our quotation → negotiate details → confirm the sample → sign contract/deposit → mass production → cargo ready → balance/delivery → further cooperation.
Q2: Do you have your own factory?
A2:Yes,we have a factory, In HangZhou, ZheJiang Province
Q3: How about the quality?
A3: We have obtained certificate RoHS, CE, CCC to ensure products are high standard quality demand.
Q4: How about your delivery time?
A4: Generally, it will take 15-20 days after receiving your deposit. The specific delivery time depends on the items and the quantity of your order.
Q5: What is minimum order?
A5: The MOQ of our products is 200 pcs for 1 model 1 size.
Q6.Do you make OEM?
A6: Yes, we could provide OEM service, which including logo printing, gift box A carton box design, if you meet our MOQ.
Q7. Do you test all your goods before delivery?
A7: Yes, We have our own QC team and our products will strictly inspection before delivery
Q8. How can I get a sample?
A8: We provide the sample, if you are interested in our products, please contact us. 
Q9. What is your payment terms?
A9. T/T, 30% deposit in advance, the balance should be paid before shipping.

 

Excitation Mode: Excited
Power Rating: 500W
Casing Protection: Protection Type
Number of Poles: 4
Speed: Low Speed
Type: Gear Type
Customization:
Available

|

gear motor

Are gear motors suitable for both heavy-duty industrial applications and smaller-scale uses?

Yes, gear motors are suitable for both heavy-duty industrial applications and smaller-scale uses. Their versatility and ability to provide torque multiplication make them valuable in a wide range of applications. Here’s a detailed explanation of why gear motors are suitable for both types of applications:

1. Heavy-Duty Industrial Applications:

Gear motors are commonly used in heavy-duty industrial applications due to their robustness and ability to handle high loads. Here are the reasons why they are suitable for such applications:

  • Torque Multiplication: Gear motors are designed to provide high torque output, making them ideal for applications that require substantial force to move or operate heavy machinery, conveyors, or equipment.
  • Load Handling: Industrial settings often involve heavy loads and demanding operating conditions. Gear motors, with their ability to handle high loads, are well-suited for tasks such as lifting, pulling, pushing, or driving heavy materials or equipment.
  • Durability: Heavy-duty industrial applications require components that can withstand harsh environments, frequent use, and demanding operating conditions. Gear motors are typically constructed with durable materials and designed to withstand heavy vibrations, shock loads, and temperature variations.
  • Speed Reduction: Many industrial processes require the reduction of motor speed to achieve the desired output speed. Gear motors offer precise speed reduction capabilities through gear ratios, allowing for optimal control and operation of machinery and equipment.

2. Smaller-Scale Uses:

While gear motors excel in heavy-duty industrial applications, they are also suitable for smaller-scale uses across various industries and applications. Here’s why gear motors are well-suited for smaller-scale uses:

  • Compact Size: Gear motors are available in compact sizes, making them suitable for applications with limited space or small-scale machinery, devices, or appliances.
  • Torque and Power Control: Even in smaller-scale applications, there may be a need for torque multiplication or precise power control. Gear motors can provide the necessary torque and power output for tasks such as precise positioning, controlling speed, or driving small loads.
  • Versatility: Gear motors come in various configurations, such as parallel shaft, planetary, or worm gear designs, offering flexibility to match specific requirements. They can be adapted to different applications, including robotics, medical devices, automotive systems, home automation, and more.
  • Efficiency: Gear motors are designed to be efficient, converting the electrical input power into mechanical output power with minimal losses. This efficiency is advantageous for smaller-scale applications where energy conservation and battery life are critical.

Overall, gear motors are highly versatile and suitable for both heavy-duty industrial applications and smaller-scale uses. Their ability to provide torque multiplication, handle high loads, offer precise speed control, and accommodate various sizes and configurations makes them a reliable choice in a wide range of applications. Whether it’s powering large industrial machinery or driving small-scale automation systems, gear motors provide the necessary torque, control, and durability required for efficient operation.

gear motor

How do gear motors compare to other types of motors in terms of power and efficiency?

Gear motors can be compared to other types of motors in terms of power output and efficiency. The choice of motor type depends on the specific application requirements, including the desired power level, efficiency, speed range, torque characteristics, and control capabilities. Here’s a detailed explanation of how gear motors compare to other types of motors in terms of power and efficiency:

1. Gear Motors:

Gear motors combine a motor with a gear mechanism to deliver increased torque output and improved control. The gear reduction enables gear motors to provide higher torque while reducing the output speed. This makes gear motors suitable for applications that require high torque, precise positioning, and controlled movements. However, the gear reduction process introduces mechanical losses, which can slightly reduce the overall efficiency of the system compared to direct-drive motors. The efficiency of gear motors can vary depending on factors such as gear quality, lubrication, and maintenance.

2. Direct-Drive Motors:

Direct-drive motors, also known as gearless or integrated motors, do not use a gear mechanism. They provide a direct connection between the motor and the load, eliminating the need for gear reduction. Direct-drive motors offer advantages such as high efficiency, low maintenance, and compact design. Since there are no gears involved, direct-drive motors experience fewer mechanical losses and can achieve higher overall efficiency compared to gear motors. However, direct-drive motors may have limitations in terms of torque output and speed range, and they may require more complex control systems to achieve precise positioning.

3. Stepper Motors:

Stepper motors are a type of gear motor that excels in precise positioning applications. They operate by converting electrical pulses into incremental steps of movement. Stepper motors offer excellent positional accuracy and control. They are capable of precise positioning and can hold a position without power. Stepper motors have relatively high torque at low speeds, making them suitable for applications that require precise control and positioning, such as robotics, 3D printers, and CNC machines. However, stepper motors may have lower overall efficiency compared to direct-drive motors due to the additional power required to overcome the detents between steps.

4. Servo Motors:

Servo motors are another type of gear motor known for their high torque, high speed, and excellent positional accuracy. Servo motors combine a motor, a feedback device (such as an encoder), and a closed-loop control system. They offer precise control over position, speed, and torque. Servo motors are widely used in applications that require accurate and responsive positioning, such as industrial automation, robotics, and camera pan-tilt systems. Servo motors can achieve high efficiency when properly optimized and controlled but may have slightly lower efficiency compared to direct-drive motors due to the additional complexity of the control system.

5. Efficiency Considerations:

When comparing power and efficiency among different motor types, it’s important to consider the specific requirements and operating conditions of the application. Factors such as load characteristics, speed range, duty cycle, and control requirements influence the overall efficiency of the motor system. While direct-drive motors generally offer higher efficiency due to the absence of mechanical losses from gears, gear motors can deliver higher torque output and enhanced control capabilities. The efficiency of gear motors can be optimized through proper gear selection, lubrication, and maintenance practices.

In summary, gear motors offer increased torque and improved control compared to direct-drive motors. However, gear reduction introduces mechanical losses that can slightly impact the overall efficiency of the system. Direct-drive motors, on the other hand, provide high efficiency and compact design but may have limitations in terms of torque and speed range. Stepper motors and servo motors, both types of gear motors, excel in precise positioning applications but may have slightly lower efficiency compared to direct-drive motors. The selection of the most suitable motor type depends on the specific requirements of the application, balancing power, efficiency, speed range, and control capabilities.

gear motor

How does the gearing mechanism in a gear motor contribute to torque and speed control?

The gearing mechanism in a gear motor plays a crucial role in controlling torque and speed. By utilizing different gear ratios and configurations, the gearing mechanism allows for precise manipulation of these parameters. Here’s a detailed explanation of how the gearing mechanism contributes to torque and speed control in a gear motor:

The gearing mechanism consists of multiple gears with varying sizes, tooth configurations, and arrangements. Each gear in the system engages with another gear, creating a mechanical connection. When the motor rotates, it drives the rotation of the first gear, which then transfers the motion to subsequent gears, ultimately resulting in the output shaft’s rotation.

Torque Control:

The gearing mechanism in a gear motor enables torque control through the principle of mechanical advantage. The gear system utilizes gears with different numbers of teeth, known as gear ratio, to adjust the torque output. When a smaller gear (pinion) engages with a larger gear (gear), the pinion rotates faster than the gear but exerts more force or torque. This results in torque amplification, allowing the gear motor to deliver higher torque at the output shaft while reducing the rotational speed. Conversely, if a larger gear engages with a smaller gear, torque reduction occurs, resulting in higher rotational speed at the output shaft.

By selecting the appropriate gear ratio, the gearing mechanism effectively adjusts the torque output of the gear motor to match the requirements of the application. This torque control capability is essential in applications that demand high torque for heavy lifting or overcoming resistance, as well as applications that require lower torque but higher rotational speed.

Speed Control:

The gearing mechanism also contributes to speed control in a gear motor. The gear ratio determines the relationship between the rotational speed of the input shaft (driven by the motor) and the output shaft. When a gear motor has a higher gear ratio (more teeth on the driven gear compared to the driving gear), it reduces the output speed while increasing the torque. Conversely, a lower gear ratio increases the output speed while reducing the torque.

By choosing the appropriate gear ratio, the gearing mechanism allows for precise speed control in a gear motor. This is particularly useful in applications that require specific speed ranges or variations, such as conveyor systems, robotic movements, or machinery that needs to operate at different speeds for different tasks. The speed control capability of the gearing mechanism enables the gear motor to match the desired speed requirements of the application accurately.

In summary, the gearing mechanism in a gear motor contributes to torque and speed control by utilizing different gear ratios and configurations. It enables torque amplification or reduction, depending on the gear arrangement, allowing the gear motor to deliver the required torque output. Additionally, the gear ratio also determines the relationship between the rotational speed of the input and output shafts, providing precise speed control. These torque and speed control capabilities make gear motors versatile and suitable for a wide range of applications in various industries.

China supplier China Supplier 2p/4p Horizontal & Vertical Mounted Gear Motor   vacuum pump oil near me		China supplier China Supplier 2p/4p Horizontal & Vertical Mounted Gear Motor   vacuum pump oil near me
editor by CX 2023-10-20